Joint and Coupled Bilingual Topic Model Based Sentence Representations for Language Model Adaptation

نویسندگان

  • Shixiang Lu
  • Xiaoyin Fu
  • Wei Wei
  • Xingyuan Peng
  • Bo Xu
چکیده

This paper is concerned with data selection for adapting language model (LM) in statistical machine translation (SMT), and aims to find the LM training sentences that are topic similar to the translation task. Although the traditional approaches have gained significant performance, they ignore the topic information and the distribution information of words when selecting similar training sentences. In this paper, we present two bilingual topic model (BLTM) (joint and coupled BLTM) based sentence representations for cross-lingual data selection. We map the data selection task into cross-lingual semantic representations that are language independent, then rank and select sentences in the target language LM training corpus for a sentence in the translation task by the semanticsbased likelihood. The semantic representations are learned from the parallel corpus, with the assumption that the bilingual pair shares the same or similar distribution over semantic topics. Largescale experimental results demonstrate that our approaches significantly outperform the state-of-theart approaches on both LM perplexity and translation performance, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HM-BiTAM: Bilingual Topic Exploration, Word Alignment, and Translation

We present a novel paradigm for statistical machine translation (SMT), based on a joint modeling of word alignment and the topical aspects underlying bilingual document-pairs, via a hidden Markov Bilingual Topic AdMixture (HM-BiTAM). In this paradigm, parallel sentence-pairs from a parallel document-pair are coupled via a certain semantic-flow, to ensure coherence of topical context in the alig...

متن کامل

Bilingual Distributed Word Representations from Document-Aligned Comparable Data

We propose a new model for learning bilingual word representations from non-parallel document-aligned data. Following the recent advances in word representation learning, our model learns dense real-valued word vectors, that is, bilingual word embeddings (BWEs). Unlike prior work on inducing BWEs which heavily relied on parallel sentence-aligned corpora and/or readily available translation reso...

متن کامل

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Bilingual Autoencoders with Global Descriptors for Modeling Parallel Sentences

Parallel sentence representations are important for bilingual and cross-lingual tasks in natural language processing. In this paper, we explore a bilingual autoencoder approach to model parallel sentences. We extract sentence-level global descriptors (e.g. min, max) from word embeddings, and construct two monolingual autoencoders over these descriptors on the source and target language. In orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013